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1 Introduction

This document outlines a shock wave propagation problem that is used as a
veri�cation test for the Uintah material point method (MPM) code. The prob-
lem consists of a thin copper �yer plate impacting an aluminum target. The
�yer plate thickness is 0.5 mm, and its initial velocity is 1 km/sec. These two
materials were chosen because, as will be explained, when the �yer plate has
a higher shock impedance than the target, the resulting wave structure in the
target becomes much more complex than for a low impedance �yer. The Uintah
simulations were performed using the CPDI interpolator, a mesh resolution of
0.01 mm, and arti�cial viscosity. The arti�cial viscosity coe�cients were found
to have a dramatic e�ect upon the simulation results.

2 Analytical solution

The pressure/particle velocity Hugoniot for the two materials is used through-
out this document. The Hugoniot represents the locus of possible shocked states
for a given material. The Hugoniot for these materials is derived from two equa-
tions: one empirical and one resulting from conservation of momentum. The
empirical equation relates the shock velocity to the change in particle velocity
across the shock. This empirical expression is

Us = Co + S(up − uo) (1)

where Us is the shock velocity, up is the particle velocity behind the shock,
and uo is the particle velocity ahead of the shock. Co and S are material
constants which are measured in the laboratory. This simple formula accurately
describes the shock behavior of a wide variety of materials, including copper and
aluminum. The material constants for copper and aluminum are Co = 3940
m/s and S = 1.489, and Co = 5386 m/s and S = 1.339 respectively. The Mie
Gruneisen equation of state, which is used in the Uintah simulations, is designed
to produce this linear relationship between the change in particle velocity and
the shock velocity.
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Figure 1: Pressure/particle velocity Hugoniot curves for copper (orange) and
aluminum (gray). The copper curve represents the possible shocked material
states for a left-going shock with an initial particle velocity of 1000 m/s.

The other governing equation for this problem is the momentum equation
written for shocks. This is known as the momentum jump condition:

P − Po = ρo(Us − uo)(up − uo), (2)

where ρo is the initial mass density, and P and Po are the pressure in front of
and behind the shock respectively. Equations 1 and 2 can be combined to form
the Pressure/particle velocity Hugoniot:

P = Po + (Co + S(up − uo))(up − uo) (3)

As written, this expression is only valid for right-going shocks. In order to
describe left-going shocks the curve must be re�ected about uo.

2.1 Initial impact

Figure 1 shows the P/up Hugoniot curves for the initial impact. The aluminum
target has an initial velocity of zero, and initial pressure of zero, which is labeled
as state 0 in Figure 1. The copper �yer plate has an initial velocity of 1000 m/s
and zero pressure, which is labeled as state 1 in Figure 1. The impact results
in a right-going shock into the target and a left-going shock into the �yer plate.
The pressure and particle velocity behind these shock waves will be the same in
both materials. Therefore, the state behind the shock waves is determined by
the intersection of the two Hugoniot curves in Figure 1. The resulting particle
velocity is 690 m/s, and the pressure is 1.21e10Pa, which is labeled as state 2
in Figure 1.
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Figure 2: Pressure/particle velocity Hugoniot curve for a right-going shock in
copper. The black dot indicates state 2, which is what resulted from the initial
impact. The intersection of this curve with the zero-pressure axis is the particle
velocity behind the rarefaction wave that propagates back toward the interface
between the two materials.

2.2 First free-surface interaction

The left-going shock wave in the �yer-plate propagates through the �yer plate
until it reaches the free-surface at the back of the plate. A right-going rarefaction
wave will be produced as a result of the free-surface interaction. This rarefaction
wave will be approximated as a shock. For small strains this is a reasonable
assumptions since the isentrope (along which actual unloading takes places) is
very close to the Hugoniot. Additionally, unlike the shock used to approximate
it, the actual rarefaction wave will spread out as it propagates. To approximate
the rarefaction as a shock, we need to �nd the zero-pressure intersection of
the right-going copper Hugoniot which also passes through state 2. This is
illustrated in Figure 2.

The resulting particle velocity is 380 m/s, and the pressure is zero. We will
call this state 3. Note that if the shock impedance (slope of the secant line
between initial and �nal states) of the �yer plate material were less than that
of the target, the particle velocity after the free-surface interaction would be
negative.

2.3 Second interface interaction

When the rarefaction wave in the �yer plate reaches the interface between the
two materials a left-going wave will propagate back into the copper �yer plate,
and a right-going wave will propagate into the aluminum. As with the initial
impact, the state resulting from the second interface reaction is the intersection
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Figure 3: Pressure/particle velocity Hugoniot curves for copper (orange) and
aluminum (gray). The curve for copper represents the possible shocked material
states for a left-going shock with an initial particle velocity of 380 m/s.

of the right-going aluminum Hugoniot and the left-going copper Hugoniot. This
time the copper Hugoniot must pass though state 3. The aluminum Hugoniot
passes through state 2, which is just the same right-going Hugoniot which passes
through the origin. These curves are shown in �gure 3.

The resulting particle velocity is 264 m/s and the pressure is 4.2e9 Pa, which
is labeled as state 4 in Figure 3. This will result in a shock wave propagating
to the left back into the �yer plate, and a rarefaction wave propagating to the
right into the aluminum target. Note that if the �yer plate had a lower shock
impedance than the target material, the particle velocity at state 2 would have
been negative, and the intersection of the two Hugoniot curves for the second
interface interaction would have been at a negative pressure. Since tension in
the interface is impossible, this would cause the two materials to separate.

2.4 Second free-surface interaction and third interface in-

teraction

The second free-surface interaction and third interface interaction behave much
as the �rst interactions discussed in detail above. The second free surface inter-
action results in a rarefaction wave propagating to the right in the copper �yer
plate. The particle velocity behind this rarefaction wave will be 149 m/s, and
the pressure will be zero. This rarefaction wave will then reach the interface
between the two materials and result in a shock wave propagating to the left
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into the copper �yer plate, and another rarefaction wave propagating to the
right into the aluminum target. The particle velocity behind these two waves
will be 104 m/s and the pressure will be 1.6e9 Pa. This process will continue
until the �yer plate comes to rest after the waves have completely dissipated.
However, for our purposes no additional wave interactions will be considered.

3 Comparison with Uintah simulation

Figure 4 shows both the analytical solution and the numerical solution found
using Uintah. The numerical simulation uses arti�cial viscosity to damp out the
ringing in the solution. Without arti�cial viscosity the numerical solution be-
comes very chaotic, with unrealistic high-frequency pressure �uctuations. This
is common in most explicit time-integration numerical schemes. An undesirable
consequence of arti�cial viscosity is that the shock fronts which are discontinu-
ities in the analytical solution, are spread out in the numerical solution. This
phenomenon does occur in real materials, but in this case it is a consequence
of arti�cial viscosity rather than an a calibrated material viscosity. The numer-
ical simulation was performed for various values of the two arti�cial viscosity
coe�cients available in Uintah. The default values are 0.2 for the linear term
and 2.0 for the quadratic term. With these values the numerical solution was
very smooth with no obvious steps in the wave structure being visible. As a
result of the large arti�cial viscosity the wave rapidly dissipated. The arti�cial
viscosity coe�cients were gradually decreased until the solution become very
noisy. As the arti�cial viscosity coe�cients were decreased, the amplitude of
the shock wave approached that of the analytical solution, and the shock fronts
became increasingly steep. The steps in the wave structure also became visible
with reduced arti�cial viscosity. The numerical solution shown in �gure 4 used
linear and quadratic arti�cial viscosity coe�cients of 0.03 and 0.3 respectively.
Note that in Figure 4 the rarefaction waves are in fact spreading out more than
the shock wave. The �rst rarefaction wave is spread out to the point that it is
beginning to reach the shock front and attenuate the shock. This phenomenon
is known as hydrodynamic attenuation. It is not observed in the analytical
solution since the rarefaction waves are treated as shock waves.

4 Conclusion

An impact/shock wave propagation problem was solved both analytically and
numerically using the Uintah MPM code. The numerical and analytical solu-
tions produced waves with nearly the same amplitude, and with a similar wave
shape. The analytical solution approximated the rarefaction waves as shocks,
which causes them to be unrealistically steep. The numerical solution required
arti�cial viscosity to damp out high-frequency �ringing�, and this caused both
the rarefaction waves and the shock waves to be spread out more than the
rate-independent material models would predict without the arti�cial viscosity.
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Figure 4: Pressure versus position in the target material for both the analytical
solution (black line) and Uintah simulation (green marks). The analytical so-
lution approximates rarefaction waves as shock waves. The Uintah simulation
includes arti�cial viscosity which cause the shock fronts to become spread out.
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Nearly all explicit time-integration schemes su�er from ringing instabilities in
the absence of arti�cial viscosity, especially with extreme gradients in the solu-
tion as are present in shock waves. Considering these factors, the numerical and
analytical solutions agree as well as can be hoped for with any solution obtained
with explicit time-integration.
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